Crystal growth of YBCO coated conductor under low pressure

M. Yoshizumi, I. Seleznev and M. J. Cima

Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, MA

Acknowledgement

This work was partially supported by American Superconductor (AMSC).

Introduction

Problems to be solved

- •Low growth rate of c-axis oriented grains long processing time
- •Jc decrease with increasing the film thickness
- Low mechanical strength

- The volume fraction of a-axis grains becomes larger with increasing the growth rate and that lowers Jc/Ic
- Boundary of stable growth regions between c-axis grains and a-axis grains; 2 nm/s (Suenaga et al.)

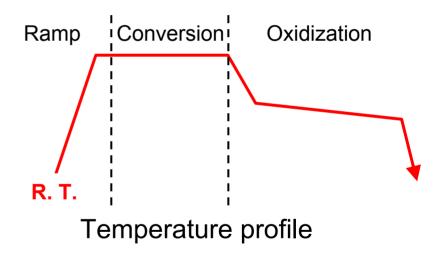
Recent result;

Low pressure conversion helps c-axis oriented grains to grow faster

Experimental

MOD derived precursor film (0.8 μ m thickness) on buffered RABiTS substrate (supplied by AMSC)

Conversion in atmosphere controlled RTA furnace


Heating conditions during Ramp and Conversion:

*P*_{total}; 173 Pa

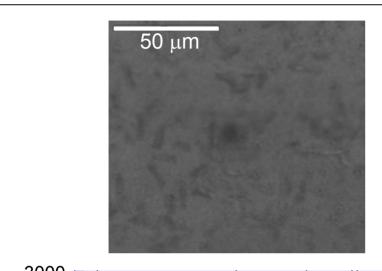
P_{O2}; 133 Pa

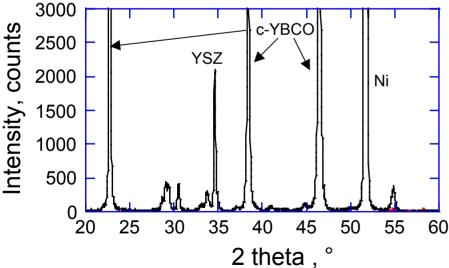
P_{H2O}; 1.3~40 Pa

Ramp rate; 76~1500 K/min

Measurement (SEM, XRD, Ic)

Rapid Thermal Annealing Equipment





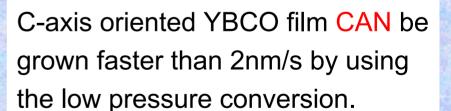
Ceramic Processing Research Laboratory Massachusetts Institute of Technology

Low pressure conversion

SEM image and XRD pattern of coated conductor converted under low total pressure

P_{total}; 173 Pa (0.0017atm)

P_{O2}; 133 Pa

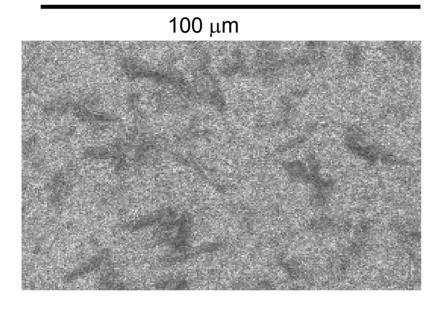

P_{H2O}; 40 Pa

Ramp rate; 380 K/min

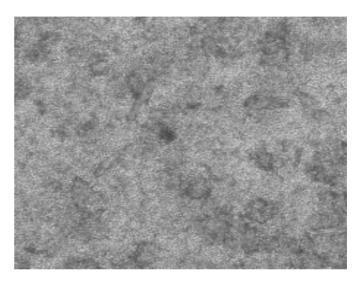
Conversion; 785 °C, 2min

Gr. Rate
$$> 800_{nm}/130_{sec}$$

= 6.1 (nm/sec) $>> 2$ (nm/s)

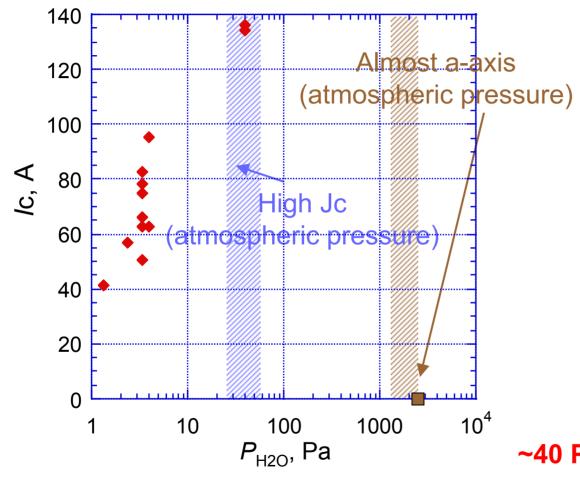


Ceramic Processing Research Laboratory Massachusetts Institute of Technology


Typical results for RABITS substrate, 0.8 micron YBCO

Temp.	Low PH ₂ O	High PH ₂ O mTorr	PO ₂ (~total P); Torr	Time at Moist (min)	lc	ramp	net growth rate (nm/s)
785	25mTorr	230	1 Pure O2	2low/3full	82.6A	2min to 785	>2.67
785	200	200	1 Pure O2	3full	134.5A	2min to 785	>4.44
785	25	250	1 Pure O2	3low/2full	82.5A	2min to 788	>2.67
785	25		1 Pure O2	7low	90.6A	10min to 785	>1.9
785	10	300	1 Pure O2	2low/1full	44.4A	2min to 785	>4.44
785	300	300	1 Pure O2	2full	135.1A	2min to 785	>6.67
785	10	300	1 Pure O2	2low/1full	41.5A	10min to 785	>4.44

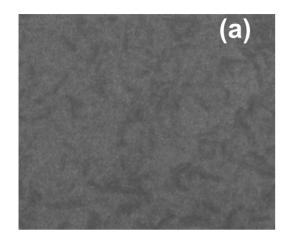
Effect of P_{H2O}

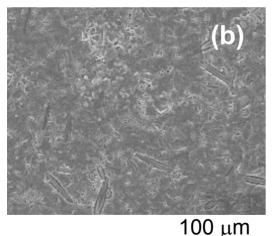

40 Pa PH₂O **135A(108 A/cm-width)**

2.4 Pa PH₂O **56.9A(45.5 A/cm-width)**

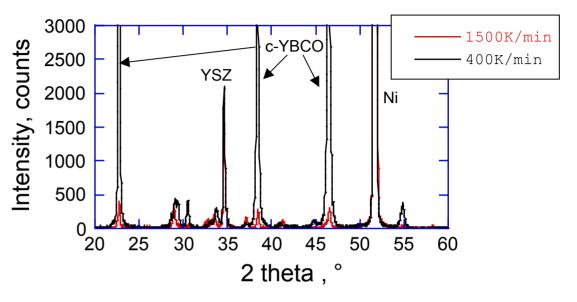
Ic decreased by lowering the P_{H2O} from 40 Pa to 5 Pa under low total pressure atmosphere.

Effect of P_{H2O}

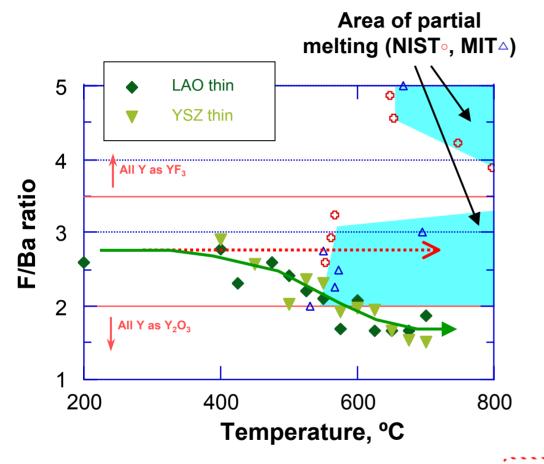



 $P_{\rm H2O}$ dependence of $I_{\rm C}$

- Ic value increases with increasing $P_{\rm H2O}$ under 133 Pa total pressure.
- Jc increases with decreasing $P_{\rm H2O}$ under atmospheric pressure.


~40 Pa P_{H2O} atmosphere could be the optimum for highest Jc/Ic

Effect of Ramp rate


SEM image of heated at (a) 400 and (b) 1500K/min ramp rate

XRD profile of heated at 1500 and 400K/min ramp rate

Strong texture of c-oriented YBCO grains could not be obtained at 1500 K/min ramp rate

Discussion

F/Ba ratio trajectory at low ramp rate and high ramp rate (estimated)

High ramp rate is thought to prevent fluorides from decomposing prior to nucleation of YBCO

High fluoride concentrated melt has high reactivity with substrate and that might result in misorientation.

Temperature profile must be optimized for correct F/Ba ratio trajectory.

Ceramic Processing Research Laboratory Massachusetts Institute of Technology